

JW-003-1015026

Seat No.

B. Sc. (Sem. V) (CBCS) (W.E.F. 2016) Examination October - 2019

Physics: Paper - 502 (Electrodynamics & Relativity)

(New Course)

Faculty Code: 003

Subject Code: 1015026

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) All questions are compulsory.

- (2) Figures on right hand side indicate marks.
- (3) Symbols have their usual meanings.
- 1 (a) Write a short answer to the following:

The current density (J) is proportional to the force per unit current. Is it true or false?

- (2) Eddy Currents are responsible for slowing down the swings of aluminium disc in the field region of magnet. Do you agree with this?
- (3) The unit of inductance is _____.
- (4) The poynting vector (S) gives the value of energy flux density. Is it true or false?
- (b) Answer in brief for the following: (any one)

(1) A cylindrical resistor of cross sectional area A and length L is made from material with conductivity σ . If the potential difference between the two ends is V, find out the current flowing in the resistor.

- (2) What is the energy stored in the magnetic field in the solenoid having self-inductance 100 mH. The current flowing in the solenoid is 1 A.
- (c) Answer the following: (any **one**)

(1) Describe Faraday's experiments and explain Faraday's law for electromagnetic induction.

(2) Derive the continuity equation.

4

2

3

	(d)	Answer in detail: (any one) 5		
		(1)	Explain mutual inductance and derive the Neumann formula for it.	
		(2)	Describe - Poynting's theorem.	
2	(a)	Write short answers to the following:		
		(1)	Standing waves do not propagate. Do you agree?	
		(2)	Wave motion is possible in a string only when it is stretched. Is it true or false?	
		(3)	Write a formula relating to wavelength $ \lambda $ and wave number $ k. $	
		(4)	The gamma rays have highest wavelength among the electromagnetic spectrum. Is it true or false?	
	(b)	Ans	wer in brief for the following: (any one)	2
		(1)	Show that the standing wave	
			$f(z,t) = A\sin(kz)\cos(kvt)$ satisfies the wave equation.	
		(2)	The intensity of sunlight hitting the earth is about 1300 W/m ² . If sunlight strikes a perfect absorber, what pressure does it exert?	
	(c)	Ans	wer the following: (any one)	3
		(1)	What is wave? Explain.	
		(2)	Obtain the formula for radiation pressure	
			when light falls on the perfect absorber.	
	(d)	Wri	te in detail : (any one)	5
		(1)	Discuss boundary conditions for reflection and	
			transmission of waves.	
		(2)	Derive the wave equation for E and B in vacuum.	
3	(a)	Write short answers to the following:		4
		(1)	In electrostatics, $\nabla \times E = 0$. Is it true or false ?	
		(2)	In magnetostatics, $\nabla A = 0$. Do you agree ?	
		(3)	The direction of a magnetic field of a point charge is always to the electric field.	
		(4)	In case of a moving point charge, velocity field is responsible for the electromagnetic radiation. Is it true or false?	

2

[Contd....

JW-003-1015026]

(b)	Answer the following: (any one)				
	(1)	Calculate only the electric field of a point charge moving with constant velocity.			
	(2)	Suppose $V = 0$ and $A = A_0 \sin(kx - \omega t)\hat{y}$, where A_0, ω and k are constants. Find E and B . Check that they satisfy Maxwell's equations in vacuum. What condition must be imposed on ω and k?			
(c)	Answer the following: (any one)				
	(1)	Write equations of V and A in terms of			
		d'Alembertian operator.			
	(2)	Explain: The Coulomb gauge.			
(d)	Write in detail : (any one)				
` ,		te in detail : (any one)	5		
	(1)	Explain in detail: Lienard-Wiechert potentials.	ี่		
		•	ีย		
(a)	(1) (2)	Explain in detail: Lienard-Wiechert potentials.	4		
(a)	(1) (2)	Explain in detail: Lienard-Wiechert potentials. Derive Jefimenko's equations for E and B.			
(a)	(1) (2) Wri	Explain in detail: Lienard-Wiechert potentials. Derive Jefimenko's equations for E and B. te short answers to the following: Only accelerated charge or changing current can			
(a)	(1) (2) Wri (1)	Explain in detail: Lienard-Wiechert potentials. Derive Jefimenko's equations for E and B. te short answers to the following: Only accelerated charge or changing current can produce radiation. Do you agree? According to Biot-Savert's law, magnetostatic fields decreases according to the term 1/r². Is it true or			
(a)	(1) (2) Wri (1) (2)	Explain in detail: Lienard-Wiechert potentials. Derive Jefimenko's equations for E and B. te short answers to the following: Only accelerated charge or changing current can produce radiation. Do you agree? According to Biot-Savert's law, magnetostatic fields decreases according to the term 1/r². Is it true or false?			

Calculate the radiation damping of a charged particle attached to a spring of natural frequency ω_0 driven at frequency ω .

(2) Find the radiation resistance of the wire joining the two ends of the dipole. Show that $R = 790(d/\lambda)^2 \Omega$, where λ is the wavelength of the radiation.

(1)

4

2

	(c)	Ans	swer the following: (any one)	3
		(1)	Explain the blueness of sky.	
		(2)	Discuss radiation reaction and derive	
			Abraham Lorentz formula.	
	(d)	Wri	te in detail : (any one)	5
		(1)	Explain magnetic dipole radiation and derive expressions of E and B .	
		(2)	Discuss power radiated by a point charge and obtain Larmour formula.	
5	(a)	Wri	te short answers to the following:	4
		(1)	What do you mean by an inertial reference frame?	
		(2)	Write formula for speed of light in terms of permeability and permittivity of vacuum.	
		(3)	According to relativity theory a moving clock runs fast. Do you agree ?	
		(4)	According to Lorentz contraction, the moving objects are shortened in all dimensions. Is it true or false?	
	(b)	Ans	swer the following: (any one)	2
		(1)	A Muon is traveling through the laboratory at three-fifths the speed of light. How long does it last? Lifetime of muon is 2 microsecond.	
		(2)	How much energy would be released if 1 kg of substance gets fully converted into energy ?	
	(c)	Ans	swer the following: (any one)	3
		(1)	Write Einstein's two postulates for relativity.	
		(2)	Explain time dilation.	
	(d)	Write in detail : (any one)		5
		(1)	Explain: The Lorentz Transformations	
		(2)	Discuss: Relativistic energy and momentum.	
JW	-003-	10150	26] 4 [800/17-2	29]